3.7.16 \(\int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [616]

3.7.16.1 Optimal result
3.7.16.2 Mathematica [A] (verified)
3.7.16.3 Rubi [A] (verified)
3.7.16.4 Maple [B] (verified)
3.7.16.5 Fricas [F]
3.7.16.6 Sympy [F(-1)]
3.7.16.7 Maxima [F]
3.7.16.8 Giac [F]
3.7.16.9 Mupad [F(-1)]

3.7.16.1 Optimal result

Integrand size = 35, antiderivative size = 270 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 A (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} (A-B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}} \]

output
2*A*(a-b)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+ 
c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+ 
c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d/sec(d*x+c)^(1/2)-2*( 
A-B)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1 
/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/( 
a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)
 
3.7.16.2 Mathematica [A] (verified)

Time = 9.70 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.03 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \left (A (a+b \cos (c+d x)) \sqrt {\sec (c+d x)} \sin (c+d x)-\frac {\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 A (a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}}-2 a (A+B) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}}+A \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}\right )}{a d \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2))/Sqrt[a + b*Cos[c + d*x 
]],x]
 
output
(2*(A*(a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]*Sin[c + d*x] - (Sqrt[Cos[(c 
+ d*x)/2]^2*Sec[c + d*x]]*(2*A*(a + b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)* 
(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] 
*Sqrt[(1 + Sec[c + d*x])^(-1)] - 2*a*(A + B)*Sqrt[(a + b*Cos[c + d*x])/((a 
 + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a 
 + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)] + A*Cos[c + d*x]*(a + b*Cos[c + d*x]) 
*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/Sqrt[Sec[(c + d*x)/2]^2]))/(a*d*Sqr 
t[a + b*Cos[c + d*x]])
 
3.7.16.3 Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 251, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3440, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(A-B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )\)

input
Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2))/Sqrt[a + b*Cos[c + d*x]],x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*A*(a - b)*Sqrt[a + b]*Cot[c + d* 
x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x 
]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 
+ Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*Sqrt[a + b]*(A - B)*Cot[c + d*x]*E 
llipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])] 
, -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Se 
c[c + d*x]))/(a - b)])/(a*d))
 

3.7.16.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
3.7.16.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(777\) vs. \(2(246)=492\).

Time = 18.68 (sec) , antiderivative size = 778, normalized size of antiderivative = 2.88

method result size
parts \(-\frac {2 A \left (-\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +\left (\csc ^{3}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{3} a -\left (\csc ^{3}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{3} b +a \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+b \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right ) \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1\right ) {\left (-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}\right )}^{\frac {3}{2}}}{d \left (\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b \right ) \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1\right ) a}-\frac {2 B \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (\cos ^{2}\left (d x +c \right )+\cos \left (d x +c \right )\right )}{d \sqrt {a +\cos \left (d x +c \right ) b}}\) \(778\)
default \(-\frac {2 {\left (-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}\right )}^{\frac {3}{2}} \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1\right ) \left (-A \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +A \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +A \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +\left (\csc ^{3}\left (d x +c \right )\right ) A a \left (1-\cos \left (d x +c \right )\right )^{3}-\left (\csc ^{3}\left (d x +c \right )\right ) A b \left (1-\cos \left (d x +c \right )\right )^{3}-B \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +a A \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+A b \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right ) \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}}{d \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1\right ) \left (\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b \right ) a}\) \(781\)

input
int((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RET 
URNVERBOSE)
 
output
-2*A/d*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos( 
d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot( 
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+ 
1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2 
+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a 
+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^ 
2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-c 
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+csc(d*x+c)^3*(1-cos(d*x+c))^3*a-csc(d*x+ 
c)^3*(1-cos(d*x+c))^3*b+a*(csc(d*x+c)-cot(d*x+c))+b*(csc(d*x+c)-cot(d*x+c) 
))*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/ 
(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1) 
*(-(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(3 
/2)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/ 
(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/a-2*B/d*((a+cos(d*x+c)*b)/(1+cos(d*x+c)) 
/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))/(a+cos 
(d*x+c)*b)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sec(d*x+c)^(3/2)*(cos(d 
*x+c)^2+cos(d*x+c))
 
3.7.16.5 Fricas [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="fricas")
 
output
integral((B*cos(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), 
 x)
 
3.7.16.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.7.16.7 Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="maxima")
 
output
integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a) 
, x)
 
3.7.16.8 Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="giac")
 
output
integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a) 
, x)
 
3.7.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

input
int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + b*cos(c + d*x))^(1/ 
2),x)
 
output
int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + b*cos(c + d*x))^(1/ 
2), x)